Building JATI: A Treebank for Indonesian

David Moeljadi

Nanyang Technological University, Singapore

The 4th Atma Jaya Conference on Corpus Studies (ConCorps 2017), Atma Jaya Catholic University, Jakarta

21 July 2017

Outline

- 1. What is a treebank?
- 2. Indonesian treebanks
- 3. The corpus: Kamus Besar Bahasa Indonesia (KBBI)
- 4. The parser: Indonesian Resource Grammar (INDRA)
- 5. Treebank development
- 6. Summary and future work

Treebank

- A treebank is a linguistically annotated corpus that includes some grammatical analysis beyond the part-of-speech level [8]
- Usages:
 - empirical linguistic research, as well as Natural Language Processing (NLP)
 - enables more precise queries
 - in qualitative research, such as finding an example of a certain linguistic construction or a counter-example to a claim about syntactic structure
 - in quantitative research, as a source of information about frequencies and co-occurrences
 - building statistical model, robust broad-coverage parsing
 - developing a broad-coverage grammar, test the grammar

Motivation

- We want to understand natural language
 - ▶ it is interesting in and of itself
 - ▶ it offers a view into human cognition
 - much knowledge is encoded in natural language
 - we want to make computers understand
- What does it mean for a machine to understand?
 - The system analyses text and grows clever
 - ★ it increase the lexicon
 - ★ it builds up the ontology
 - ★ it changes the stochastic model

Indonesian treebanks

- The Indonesian Dependency Treebank developed by Charles University in Prague [5]
- The Indonesian Treebank developed by the Faculty of Computer Science of University of Indonesia [4]
- The Indonesian Treebank in the Asian Language Treebank (ALT), built by the Agency for the Assessment and Application of Technology (BPPT) [13]
- the Indonesian Treebank in the ParGram Parallel Treebank (ParGramBank), based on LFG "IndoGram" [15]

Other treebanks

- Penn Treebank
- The LinGO Redwoods Treebank of English [11]
- Hinoki [2]

JATI Overview

- Based on an HPSG grammar of Indonesian: Indonesian Resource Grammar (INDRA) [6]
 We want to develop a broad-coverage grammar together with the treebank. Treebanking allows us to immediately identify problems in the grammar and improving the grammar directly improves the quality of the treebank [9]
- Parsing (a subset of) dictionary definition sentences: KBBI Fifth Edition [1]
- Creating a corpus that can be studied: JATI

The corpus: Kamus Besar Bahasa Indonesia (KBBI)

- The fifth edition of KBBI [1], published by Badan Pengembangan dan Pembinaan Bahasa
- The KBBI database, a machine-tractable dictionary [7]
- 108,240 entries, 126,643 definitions, 29,260 examples (as of 15 June 2017)

KBBI definition sentences

Definitions related to food, drinks, spices, edible things are extracted and edited

Before	After
minuman keras yg dibuat dr nira	minuman keras <i>yang</i> dibuat <i>dari</i>
yg telah disuling	nira <i>yang</i> telah disuling
kue kering, dibuat <i>dr</i> sagu dan	kue kering <i>yang</i> dibuat <i>dari</i> sagu dan
dibungkus <i>dng</i> daun nipah	dibungkus <i>dengan</i> daun nipah
makanan <i>terbuat dr</i> daging, udang,	makanan <i>yang dibuat dari</i> daging,
ikan <i>yg</i> dicincang	udang, <i>atau</i> ikan <i>yang</i> dicincang

- Shorter, compared with other commonly used text for corpora, such as newspaper text
- Contain more fragments, especially noun phrases
- Valid examples of naturally occurring texts

The parser: Indonesian Resource Grammar (INDRA)

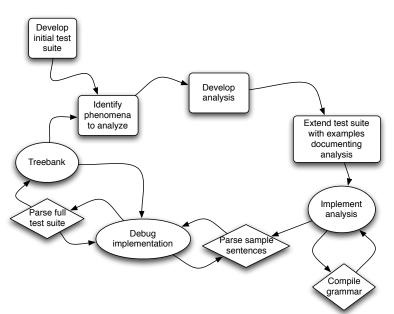
- open-source Indonesian computational grammar [6] https://github.com/davidmoeljadi/INDRA
- parse and generate Indonesian text
- open-source tools in Deep Linguistic Processing with HPSG Initiative (DELPH-IN)
 - Documentation (http://moin.delph-in.net/IndraTop)
 - ► ITSDB or [incr tsdb()] [10]
 - ► Full Forest Treebanker (FFTB) [12]
- theoretical framework of Head Driven Phrase Structure Grammar (HPSG) [14]
- Minimal Recursion Semantics (MRS) [3]
- 1,885 types, 15,099 lexical items, 38 rules (as of 15 June 2017)

Choosing a Grammar

HPSG is chosen for the following reasons:

- Serious attempt to cover linguistic phenomena both core and periphery
- unification- and constraint-based context free grammar (phrase structure grammar)
 - consists of a set of rules and a lexicon of symbols (parts-of-speech) and words, surface oriented (no additional abstract structures)
- Integration of syntax and semantics (mono-stratal) we are most interested in semantics
 - tractable representation: MRS
- A vibrant research community
 - well developed open source tools
 - integration with shallow processing

Open Resources: DELPH-IN


Deep Linguistic Processing with HPSG Initiative

- Grammars: English (ERG), Japanese (JACY), Chinese (Zhong), Indonesian (INDRA), ...
- Development Environment: Linguistic Knowledge Builder (LKB)
- Processor: Answer Constraint Engine (ACE)
- Test Environment: ITSDB or [incr tsdb()]
- Treebanking tools: FFTB
- Machine Translation: LOGON

Approaches to Treebanking

- Manual Annotation
- Semi-Automatic
 - Parse and repair by hand: Penn WSJ, Kyoto Corpus
 - ↑ 100% cover, reasonably fast
 - ↓ Often inconsistent, Hard to update, Simple grammars only (prop-bank is separate)
 - Parse and select by hand: Redwoods, Hinoki, JATI
 - All parses grammatical, Feedback to grammar, Consistent
 Both syntax and semantics, Easy to update
 - ↓ Cover restricted by grammar
 - Discriminant-based treebanking: select or reject discriminants until one parse remains

Grammar development

Summary and future work

- Refining the analyses
 - Improving INDRA by adding new rules and lexical types
- Automate analysis
 - parse ranking
- Expanding the system
 - Adding non-familiar words (lexical acquisition)
 - Dynamic handling of unknown words

Long Term Goals

- Make text understanding available to everyone
 - ► Machine translation
 - Question answering
 - Speech recognition
 - Man-machine interfaces
- Link words to meanings for all languages

Acknowledgments

- Thanks to Francis Bond for his inspiration and advice to build JATI
- Thanks to Dora Amalia who gave permission to use a part of the fifth edition of KBBI data
- Some slides use material from:
 - "The Hinoki Treebank: Toward Text Understanding" by Francis Bond, Sanae Fujita, Chikara Hashimoto, Shigeko Noriyama, Eric Nichols, Takaaki Tanaka, and Hiromi Nakaiwa
 - "Treebanking an Open Forest: The Tanaka Corpus" by Francis Bond and Takayuki Kuribayashi

References I

Dora Amalia, ed. *Kamus Besar Bahasa Indonesia*. 5th ed. Jakarta: Badan Pengembangan dan Pembinaan Bahasa, 2016. ISBN: 9786024371715.

Francis Bond et al. "The Hinoki Treebank: A Treebank for Text Understanding". In: Proceedings of the First International Joint Conference on Natural Language Processing (IJCNLP-04). Springer Verlag Lecture Notes in Computer Science, 2004, pp. 158–167.

Ann Copestake et al. "Minimal Recursion Semantics: An Introduction". In: Research on Language and Computation 3.4 (2005), pp. 281–332.

Arawinda Dinakaramani et al. "Developing (and Utilizing) an Indonesian Treebank". In: *The Second Wordnet Bahasa Workshop*. Nanyang Technological University, Singapore, Jan. 2016.

References II

Nathan Green, Septina Dian Larasati, and Zdeněk Žabokrtský. "Indonesian Dependency Treebank: Annotation and Parsing". In: 26th Pacific Asia Conference on Language, Information and Computation. 2012, pp. 137–145.

David Moeljadi, Francis Bond, and Sanghoun Song. "Building an HPSG-based Indonesian Resource Grammar (INDRA)". In: *Proceedings of the GEAF Workshop, ACL 2015.* 2015, pp. 9–16. URL: http://aclweb.org/anthology/W/W15/W15-3302.pdf.

David Moeljadi, Ian Kamajaya, and Dora Amalia. "Building the Kamus Besar Bahasa Indonesia (KBBI) Database and Its Applications". In: *Proceedings of the 11th International Conference of the Asian Association for Lexicography.* Ed. by Hai Xu. the Asian Association for Lexicography. Center for Linguistics and Applied Linguistics, Guangdong University of Foreign Studies, 2017, pp. 64–80.

References III

Joakim Nivre. "Treebanks". In: Corpus Linguistics: An International Handbook. Ed. by Anke Lüdeling and Merja Kytö. Vol. 1. Berlin: Walter de Gruyter, 2008. Chap. 13, pp. 225–241.

Stephan Oepen, Dan Flickinger, and Francis Bond. "Towards Holistic Grammar Engineering and Testing–Grafting Treebank Maintenance into the grammar revision cycle". In: Beyond Shallow Analyses–Formalisms and Statistical Modelling for Deep Analysis (Workshop at IJCNLP-2004). Hainan Island, 2004.

Stephan Oepen and Daniel Flickinger. "Towards systematic grammar profiling: Test suite technology ten years after". In: *Journal of Computer Speech and Language*. Vol. 12. 4. 1998, pp. 411–436.

Stephan Oepen et al. "LinGO Redwoods: A Rich and Dynamic Treebank for HPSG". In: *Proceedings of The First Workshop on Treebanks and Linguistic Theories (TLT2002)*. Sozopol, Bulgaria, 2002.

References IV

Woodley Packard. FFTB: the full forest treebanker. Dec. 2014. URL: http://moin.delph-in.net/FftbTop (visited on 04/24/2015).

Hammam Riza et al. "Introduction of the Asian Language Treebank". In: 2016 Conference of The Oriental Chapter of International Committee for Coordination and Standardization of Speech Databases and Assessment Technique (O-COCOSDA). IEEE. 2016, pp. 1–6.

Ivan A. Sag, Thomas Wasow, and Emily M. Bender. *Syntactic Theory: A Formal Introduction*. 2nd ed. Stanford: CSLI Publications, 2003.

Sebastian Sulger et al. "ParGramBank: The ParGram Parallel Treebank." In: *Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics*. Association for Computational Linguistics. Sofia, Bulgaria, Aug. 2013, pp. 550–560.

Thank you

te.ri.ma ka.sih *n* rasa syukur;

ber.te.ri.ma ka.sih *v* mengucap syukur; melahirkan rasa syukur atau membalas budi setelah menerima kebaikan dsb